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Introduction by the Organisers

This meeting had 53 participants from 12 countries (Belgium, Canada, Czechoslo-
vakia, China, France, Germany, Japan, Norway, Russia, Switzerland, UK and the
US) and 24 lectures were presented during the five day period. The sponsorship
of the European Union and other organizations allowed the organizers to invite
and secure the participation of a number of young investigators, some of whom
presented thirty-minute lectures. As always, there was a substantial amount of
mathematical activity outside the formal lecture sessions. This meeting explored
the applications of ideas and techniques from algebraic geometry to noncommuta-
tive algebra and vice-versa. A number of lectures presented open problems. Areas
covered include

• noncommutative projective algebraic geometry,
• (quantized) quiver varieties/quiver representations,
• deformation theory,
• representation theory of Cherednik and related Hecke algebras
• D-module theory,
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A number of advances in the above areas were presented and possible starting
points for further research proposed. The breadth of the conference is illustrated
by the abstracts.
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Abstracts

A counterexample to the Poisson Dixmier-Moeglin equivalence

Jason Bell

(joint work with Stéphane Launois, Omar Leon-Sanchez, Rahim Moosa)

Let A be a finitely generated complex algebra that is equipped with a Poisson
bracket { , , , } : A×A→ A; that is, { , , , } is a Lie bracket and for every a ∈ A,
we have {a, −} is a derivation of A. An ideal I of A is called a Poisson ideal if
{I, A} ⊆ A. Then we say that A is Poisson algebra. Brown and Gordon asked
whether the Poisson Dixmier-Moeglin equivalence holds for prime Poisson ideals
in any complex affine Poisson algebra; that is, whether the sets of Poisson rational
ideals, Poisson primitive ideals, and Poisson locally closed ideals coincide. Here,
we recall that a prime ideal P is Poisson locally closed if it is locally closed in the
the space of Poisson prime ideals (with topology given by the induced topology by
the Zariski topology); P is Poisson rational if the induced Poisson bracket on the
field of fractions of A/P has the property that if f ∈ Frac(A/P ) has the property
that {f, x} = 0 for all x ∈ A/P then f is in C; finally P is Poisson primitive if
there is a maximal ideal M that contains P such that P is the largest Poisson
ideal contained in M .

We give a complete answer is given to this question using techniques from
differential-algebraic geometry and model theory. In particular, it is shown that
while the sets of Poisson rational and Poisson primitive ideals coincide, in every
Krull dimension at least four there are complex affine Poisson algebras with Poisson
rational ideals that are not Poisson locally closed. A weaker version of the Poisson
Dixmier-Moeglin equivalence is proven for all complex affine Poisson algebras,
from which it follows that the full equivalence holds in Krull dimension three or
less. Finally, we show that everything, except possibly that rationality implies
primitivity, can be done over an arbitrary base field of characteristic zero.

References

[1] J. Bell, S. Launois, O. Leon-Sanchez, R. Moosa, Poisson algebras via model theory and
differential algebra. arxiv.org.1406.0867.

Caloger-Moser Spaces and Grothendieck’s Ring of Varieties

Gwyn Bellamy

Associated to a smooth curve C, finite group G of automorphisms of C, and a
positive integer n is the Calogero-Moser deformation CMn(C,G)→ cn. It is a flat
Poisson deformation of T ∗(Cn/Sn ≀ G) over the affine base cn, where Sn is the
symmetric group. The deformation can be constructed as a certain coarse moduli
space. We would like to understand these spaces better. A first step in doing so is
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to consider, for each c ∈ cn, the class of the fiber CMn,c(C,G) in Grothendieck’s
ring of varieties K0(VarC). We show that, for c Weil generic,

∑

n≥0

[CMn,c(C,G)]tn =



∏

n≥1

1

1− Lntn




[C/G]

where L is the Lefschetz motive. This implies that [CMn,c(C,G)] equals the class
of the Hilbert scheme Hilbn(T ∗(C/G)) of n points in T ∗(C/G) in K0(VarC). For
arbitrary parameters c, we present a conjectural formula for the power series∑

n≥0[CMn,c(C,G)]tn in terms of certain generalized characters of higher level

Fock spaces for the quantum group Uq(ŝl∞). This talk is based on joint work in
progress with Oleg Chalykh.

Geometric Tilting Objects

Ragnar-Olaf Buchweitz

After reviewing the definitions and structure theorem for d-representation in-
finite and (d+ 1)-higher preprojective algebras (due to Keller, Herschend-Iyama-
Oppermann, Amiot-Iyama-Reiten, Minamoto-Mori) we discussed the notion of
geometric objects in Ext-finite triangulated categories with Serre functor starting
from a suggestion by Bondal.
We say that an object F in such a category has Serre dimension d if there exists
an a ≥ 0 such that for each i ∈ Z,

Extj(Si
dF, F ) = 0 for j /∈ [−a, a+ d]

where Sd := S ◦ [−d] is the translated Serre functor. The object is sheaf-like if one
can take a = 0. It T is a tilting object with endomorphism algebra Λ , then T has
Serre dimension d = gldim(Λ) and is sheaf-like if and only if Λ is d-representation
infinite and then the associated (d+1)-preprojective algebra is ⊕i≥0Hom(Si

dT, T )
which one can interpret as the pullback of T to the (virtual) canonical bundle still
being a tilting object. If the (d+1)-preprojective algebra is graded coherent (as is
conjectured to always hold), then the work of Miramoto implies that Db(Λ) carries
a geometric t-structure of dimension d and thus, satisfies Bondal’s requirement

Construction of D-Modules with prescribed p-support

Christopher Dodd

In this talk, I discussed the construction of (a part of) the quantization cor-
respondence for algebraic D-modues motivated by conjectures of Kontsevich and
Belov-Kanel. We explained how, to any smooth Lagrangian L ⊂ T ∗X (where X is
a smooth complex affine variety) with H1(L,C) = 0, one can associate in a natural
way a holonomic DX -module M. This DX -module is irreducible and it has the

propert that after reduction mod p its ”p-support” is equal to L
(1)
k ⊂ T ∗X

(1)
k where

k is a perfect field of positive characteristic for al p ≫ 0. If H1(L,Z) = 0, this
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module is unique. As a consequence, we explained that this implies the existence
of an isomorphism

AutMor(Dn)
∼
−→ AutSymp(T

∗An)

which is a weak version of a very surprising conjectuve if Kotsevich and Belov-
Kanel

Cohomology of Non-Commutative Hilbert Schemes as Modules over
the Cohomological Hall Algebra

Hans Franzen

1. Non-Commutative Hilbert Schemes

Non-commutative Hilbert schemes generalize classical Hilbert schemes in the
following way: The Hilbert scheme Hilbd(A

m) is a variety whose (complex valued)
points parametrize ideals I of the polynomial algebra C[x1, . . . , xm] such that
C[x1, . . . , xm]/I has dimension d as a complex vector space.

In contrast, the non-commutative Hilbert scheme Hilb
(m)
d is a variety whose

points are in bijection to left ideals I of the free non-commutative algebra A :=
C〈x1, . . . , xm〉 in m variables having codimension d (as a complex vector space).

A result of Nakajima [4] asserts that the direct sum
⊕

dH
∗(Hilbd(A

2)) of the
(singular) cohomology groups (with rational coefficients) carries the structure of
a representation of the infinite-dimensional Heisenberg algebra; in fact, it is iso-
morphic to the bosonic Fock space. Using this structure, Lehn and Sorger (cf. [3])
were able to identify the cohomology rings H∗(Hilbd(A

2)) with the ring of class
functions of the symmetric group Sd. We would like to find a suitable analog of

these results for the cohomology of the non-commutative Hilbert schemes Hilb
(m)
d .

The variety Hilb
(m)
d can be constructed using geometric invariant theory. Let

R̂d := Cd ×Rd

where Rd := Md×d(C)
m. The vector space R̂d is equipped with an action of

the general linear group Gld by left multiplication on the vector and simultaneous
conjugation on the matrices. We take the stability condition induced by the deter-
minantal character of Gld. This means that a point (v, φ∗) is (semi-)stable if and
only if v generates the d-dimensional left-A-module which arises by the m-tuple
of matrices φ∗. The geometric quotient

R̂st
d /Gld,

which is even a principal Gld-fiber bundle, is isomorphic to Hilb
(m)
d by identifying

the orbit of a stable point (v, φ) with the left-ideal AnnA(v). Note that Hilb
(m)
d is

a smooth variety.



8 Oberwolfach Report 25/2014

2. Cohomological Hall Algebra

The Cohomological Hall algebra, which we will call CoHa in the following,
was invented by Kontsevich and Soibelman (cf. [2]). It was constructed in order
to provide a categorification of (motivic) Donaldson-Thomas invariants. Their
construction works in vast generality; we are considering the CoHa H of the m-
loop quiver (and trivial potential). As a graded vector space, it is defined as direct
sum

H =
⊕

d≥0

H∗
Gld(Rd)

of equivariant singular cohomology groups with rational coefficients. The multi-
plication is induced by suitable “Hecke correspondences”

Rp ×Rq ← Rp,q → Rp+q,

where Rp,q is the vector space of m-tuples of (d×d)-matrices having a block upper
triangular shape ( p ∗

q ). Kontsevich and Soibelman give an algebraic description of
the thus obtained multiplication by identifying

H∗
Gld

(Rd) ∼= H∗
Gld

(pt) ∼= H∗
Td
(pt)Sd ∼= Sym(X(Td))

Sd ∼= Q[x1, . . . , xd]
Sd .

Using Bott localization, they prove:

Theorem 1 (Kontsevich-Soibelman). For f ∈ Hp and g ∈ Hq, the product f ∗ g,
regarded as a symmetric polynomial in d = p+ q variables, equals

∑

1≤i1<...<ip≤d
1≤j1<...<jq≤d
complementary

f(xi1 , . . . , xip)g(xj1 , . . . , xjq )

p∏

µ=1

q∏

ν=1

(xjν − xiµ)
m−1.

3. A CoHa-Module

We are going to define a left-H-module structure on the direct sum
⊕

d≥0

H∗(Hilb
(m)
d )

using the fact that H∗(Hilb
(m)
d ) = H∗

Gld
(R̂st

d ). We work with a modified version of
the Hecke correspondences

Rp × R̂st
q ← R̂st

p,q → R̂st
p+q,

where R̂st
p,q is by definition (Cd×Rp,q)∩R̂st

d . These types of CoHa-modules arising
from stable framed objects are also considered in [6] in greater generality. The

equivariant maps Rd ← R̂d ←֓ R̂st
d induce a map

j∗ : H →
⊕

d≥0

H∗(Hilb
(m)
d )

which can easily seen to be H-linear (with H considered as a left-module over
itself) and surjective. In [1], we show:
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Theorem 2. The kernel of j∗ equals
⊕

p≥0,q>0

Hp ∗ (eq ∪Hq),

where ∗ is the CoHa-multiplication, eq(x1, . . . , xq) = x1 . . . xq, and ∪ is the cup
product on Hq = H∗

Glq
(Rq) which identifies with the multiplication of symmetric

polynomials.

The proof of the above theorem relies on Harder-Narasimhan methods and
computations with fiber bundles. It can be generalized to modules over the CoHa
of an arbitrary quiver arising from arbitrary framing data. As a consequence of

Theorem 2, we obtain a description of the cohomology ring H∗(Hilb
(m)
d ) in terms

of generators and relations which can be regarded as an analog of Lehn-Sorger’s
result. Choose a basis of Hp ⊗Hq over Hd whose elements we may assume to be
of the form fλ,p ⊗ gλ,q.

Corollary 3. The kernel of the map j∗ : Q[e1, . . . , ed]→ H∗(Hilb
(m)
d ) is generated

by expressions of the form
fλ,p ∗ (eq ∪ gλ,q)

with p = 0, . . . , p− 1, q = d− p and λ = 1, . . . ,
(
d
p

)
.

The non-commutative Hilbert scheme Hilb
(m)
d is a fine moduli space which

means it possesses a universal bundle U of rank d. Under the map j∗, the generator
ei is sent to ci(U). Using a cell decomposition of Reineke (cf. [5]), we obtain a
monomial basis in Chern classes of U for the cohomology with integral coefficients.

Proposition 4. The cohomology H∗(Hilb
(m)
d ;Z) with integral coefficients is a free

abelian group with a basis given by the monomials

c1(U)
bd−1 . . . cd−1(U)

b1

where b = (b1, . . . , bd) is a tuple of non-negative integers satisfying b1 + . . .+ bi ≤
(m− 1)d for every i = 1, . . . , d− 1.

References
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Quantum cluster algebras and quantum nilpotent algebras

K. R. Goodearl

(joint work with M.T. Yakimov)

The theme of this talk was general quantum cluster algebra structures and their
construction within the large, axiomatically defined class of quantum nilpotent
algebras. The approach was developed in [1, 2]. Many important families of
quantized coordinate rings are subsumed in the class covered by these methods,
such as that of quantum Schubert cell algebras. In particular, the results extend
the theorem of Geiss, Leclerc and Schröer for the case of symmetric Kac–Moody
groups. A consequence is the verification of the Berenstein–Zelevinsky conjecture
postulating the existence of quantum cluster algebra structures on all quantized
coordinate rings of double Bruhat cells in simple Lie groups.

References

[1] K.R. Goodearl and M.T. Yakimov, From quantum Ore extensions to quantum tori via
noncommutative UFDs, arXiv:1208.6267.

[2] K.R. Goodearl and M.T. Yakimov, Quantum cluster algebra structures on quantum nilpotent
algebras, arXiv:1309.7869.

Highest weight and monoidal structure for strict polynomial functors

Henning Krause

In representation theory of artin algebras, it is an old idea of Auslander [3] to
‘resolve’ an algebra A by finding an algebra B of finite global dimension together
with an idempotent e such that eBe is isomorphic to A. Later, this idea was refined
by asking for the algebra B to be quasi-hereditary. A prototypical example is the
pair (A,B) consisting of the group algebra A of the symmetric group and B the
corresponding Schur algebra. In fact, the right perspective seems to be the study of
the category of strict polynomial polynomial functors (in the sense of Friedlander–
Suslin [5]), which is equivalent to modules over a Schur algebra and contains the
representation theory of the symmetric group.

In some recent work [7] the highest weight structure for the category of strict
polynomial functors is explained in elementary terms, using classical facts about
Schur functors [1] (including the Cauchy decomposition formula) and working over
an arbitrary commutative ring. Of course, this implies the well-known fact that
Schur algebras are quasi-hereditary and have finite global dimension. The point
here is to offer an elementary approach which should help to understanding more
interesting situations, as they arise for instance in recent work by Buchweitz–
Leuschke–Van den Bergh [4].

The second aspect of this work concerns the monoidal structure. There is a
tensor product for the category of strict polynomial functors which one can use
to describe the Koszul-Ringel duality [6]. Recent work of Aquilino–Reischuk [2]
shows that this tensor product is actually compatible with the tensor product for
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representations of the symmetric group. Thus we have a resolution (in Auslander’s
sense) which is in fact a monoidal functor.

References
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Irreducible components of varieties of representations

Birge Huisgen-Zimmermann

Let A be a finite dimensional algebra over an algebraically closed field. In this
general setting, we “corner” the irreducible components of the varieties RepdA
parametrizing the A-modules with fixed dimension vector d through upper semi-
continuous maps from RepdA to suitable posets. This process leads to a finite col-
lection of closed irreducible subvarieties of RepdA, which includes the irreducible
components. The subsequent process of sifting is, however, not expected to allow
for a satisfying general solution, but needs to be customized for special classes of
algebras. The first nontrivial instances of a full listing of the components were
provided by Schröer (with different methods) for the class of Gelfand-Ponomarev
algebras, a good illustration of the intricacy of the task.

We show how, for truncated path algebras of arbitrary quivers, the above strat-
egy allows to detect and separate the components in terms of generic invariants
of their modules. We are thus led to easily applicable criteria for determining the
components from quiver and Loewy length of A; the components are paired with
an array of representation-theoretic properties of their modules. In the special
case where A is local (that is, based on a quiver with a single vertex and a finite
number r of loops), the component problem is particularly easily resolved. In
particular, it is easy to count the number of components for any dimension d as
a function of r and the Loewy length of A. The latter counts generalize existing
formulas for r = 2 and Loewy length 2, first obtained by Donald and Flanigan.
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Cyclotomic Mackey Functors

Dmitry Kaledin

In noncommutative geometry, differential forms and de Rham cohomology classes
appear in the form of Hochschild and cyclic homology. The corresponding natural
linear algebraic structures such as the de Rham differential and the Hodge filtra-
tion are conveniently packaged using the category Λ introduced by A. Connes.
However, for algebraic varieties over a finite field or a ring of p-adic integers, de
Rham cohomology can be refined to the cristalline cohomology of A. Grothendieck
and all parts of the story have their counterparts such as the de Rham-Witt com-
plex of P. Deligne and L. Illusie and the filtered Dieudonné module structure on
cohomology in the sense of J-M. Fontaine. If this refinement were to extend to the
noncomutative setting, one would need a way to package additional linear algebra
in a sufficiently simple and natural way, possibly extending Connes’ approach. The
notion of a cyclotomic Mackey functor is designed to give such a packaging. Its
definition combines Connes’ cyclic objects and the so-called Mackey functors for
the group Z and automatically provides al the linear algebra one needs.

Quantized Gieseker moduli spaces

Ivan Losev

This talk describes my recent results on the representation theory of quantized
Gieseker moduli spaces, [2]. Let us define those quantized spaces.

We start with a pair n, r of positive integers. Set V := Cn,W := Cr. We form
the space R := sl(V ) ⊕ Hom(V,W ), this space comes equipped with a natural
action of the group G = GL(V ). We have an induced action of G on T ∗R =
R ⊕ R∗ ∼= sl(V )⊕2 ⊕ Hom(V,W ) ⊕ Hom(W,V ). This action is Hamiltonian with
moment map µ : T ∗R → g∗ ∼= g given by µ(A,B, i, j) := [A,B] + ji. The dual
map µ∗ : g→ C[T ∗R] is given by x 7→ xR, where xR denotes the vector field on R
induced by x, this vector field is viewed as a function on T ∗R.

Using the Hamiltonian action, we can form several different versions of a Hamil-
tonian reduction. First, set M(n, r) := µ−1(0)//G, i.e., M(n, r) is an affine al-
gebraic variety with C[M(n, r)] = (C[T ∗R]/C[T ∗R]{xR|x ∈ g})G. Next, pick
a nonzero integer θ that can be viewed as a character of G via the identifica-
tion Z

∼
−→ Hom(G,C×), θ 7→ [g 7→ det(g)θ]. So we can form the GIT quotient

Mθ(n, r) := µ−1(0)θ−ss//G. The product of Mθ(n, r) with C2 is the Gieseker
moduli space parameterizing the torsion free rank r degree n sheaves on P2 triv-
ialized at infinity. Finally, we can form the quantum Hamiltonian reduction
quantizing M(n, r). Namely, pick λ ∈ C and view λ as the character x 7→
λ tr(x) of g. The quantum Hamiltonian reduction Aλ(n, r) is, by definition,
(D(R)/D(R){xR − 〈λ, x〉, x ∈ g})G, where D(R) stands for the algebra of lin-
ear differential operators on R. The algebra Aλ(n, r) is filtered and the associated
graded coincides with C[M(n, r)]. We could also form a quantization Aθ

λ(n, r) of
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Mθ(n, r) that is a sheaf of filtered algebras playing a crucial role in the theory but
we are not going to do that in order to keep the exposition simple.

The goal of this project is to study the representation theory of Aλ(n, r). One
motivation is an application to the representation theory of the quantizations of
more general Nakajima quiver varieties. For example, in [2], results on Aλ(n, r)
were applied to extend the main theorem of [1] on the number of finite dimensional
irreducible representations of quantized quiver varieties to the case of affine type
quivers with arbitrary framing.

Let us list some results on the representation theory of Aλ(n, r).

Theorem 1. The algebra Aλ(n, r) has a finite dimensional irreducible represen-
tation if and only if λ is a rational number of the form q

n with GCD(q, n) = 1
lying outside the interval (−r, 0). If λ has this form, then there is a unique finite
dimensional irreducible representation and every finite dimensional representation
is completely reducible.

Theorem 2. The algebra Aλ(n, r) has infinite homological dimension if and only
if λ ∈ (−r, 0) is a rational number with denominator ≤ n.

Theorem 3. Suppose Aλ(n, r) has finite homological dimension and let n′ denote
the denominator of λ. Then there are precisely [n/n′] proper two-sided ideals in
Aλ(n, r). They form a chain and all of them are prime.

References
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Hochschild cohomology with support

Wendy Lowen

In this talk, we present our recent work [8], in which we propose a new point of
view in order to treat and obtain certain decompositions for Hochschild cohomol-
ogy. We illustrate this by revisiting several results on Hochschild cohomology of
schemes which were obtained in joint work with Michel Van den Bergh [10],[11].

0.1. Hochschild cohomology. Hochschild cohomology is originally a cohomol-
ogy theory for algebras. For a k-algebra A (with k a field), we have

HHn(A) = ExtnA−A(A,A)

computed in the category of A-bimodules. It is the cohomology of the Hochschild
complex C(A), which is a B∞-algebra, in particular it is endowed with all the
algebraic structure relavant for higher order deformation theory. In general, the
cohomology is notoriously hard to compute, although in some special cases, com-
putations can be carried out:

(1.a) For a commutative affine regular algebra A, the classical Hochschild-
Kostant-Rosenberg theorem states that HHn(A) = Λn

ADer(A).
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(1.b) For an upper triangular matrix algebra R =

(
A M
0 B

)
, we have an asso-

ciated Happel long exact sequence [4]

. . . −→ HHi(R) −→ HHi(A)⊕HHi(B) −→ ExtiA−B(M,M) −→ . . .

Hochschild cohomology has also been considered for a (quasi-compact, sepa-
rated) scheme X by Kontsevich, Swan, Yekutieli and others, using the following
expression:

HHn(X) = ExtnX×X(OX ,OX).

From this definition, it is not clear whether there exists a B∞-algebra C(X) which
computes the cohomology. One possible approach to obtain such a B∞-algebra
follows from the work of Gerstenhaber and Schack in two steps:

(2.a) These authors define Hochschild cohomology for an arbitrary presheafA of
algebras as HHn(A) = ExtnA−A(A,A), and for a scheme X , they propose
HHn(A), where A is the structure sheaf restricted to an affine basis, as
the correct cohomology of X [2]. One can show that HHn(X) = HHn(A)
[10].

(2.b) For a presheaf of algebras A, these authors construct a single algebra A
with HHn(A) ∼= HHn(A) [3]. Thus, we arrive at the Hochschild complex
C(A) as a B∞-algebra computing HHn(X).

0.2. Map-graded categories. The aim of this talk is to present a general frame-
work in which to understand results like (1.b) and (2.b), and in which to state some
general decomposition techniques for Hochschild complexes. These techniques are
of a different nature than the classical HKR type decompositions, and do not rely
on assumptions like smoothness or characteristic zero.

The fundamental objects in our approach are map-graded categories [6]. A
map-graded category a can be viewed as a monoid-graded algebra with several
objects. It has an underlying grading category U , object sets aU for U ∈ U , and
morphism modules au(A,A

′) for u : U −→ U ′ in U , A ∈ aU and A′ ∈ aU ′ . These
data should satisfy the obvious category-type axioms. The following are examples
of map-graded categories:

(3.a) If U satisfies U(U,U ′) = {∗} or U(U,U ′) = ∅ for all U,U ′ ∈ U , then U-
graded categories are in 1-1 correspondence with linear categories a with
Ob(a) = U and a(U,U ′) = 0 if U(U,U ′) = ∅. Thus, in this case a grading
prescribes a certain “shape” for a linear category. This situation was
described in [10] using so called censoring relations on a category.

(3.b) For a presheaf of k-algebras A : U −→ Alg(k), there is an associated U-
graded category a obtained as a kind of k-linear Grothendieck construction
from A in the spirit of [1] (where the input is a pseudofunctor U −→
Cat and the output is a category fibered over U). The category a is an
intermediate object between A and the algebra A from (2.b).

(3.c) For two linear categories a and b and an a-b-bimodule M , Keller’s arrow
category (b→M a) [5] is naturally graded over the path category of • → •.
It is the natural categorical version of the algebra R from (1.b).
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Small map-graded categories (over a fixed k) can be organized into a category
Map. For a functor ϕ : V −→ U between small categories and a U-graded category
a, we obtain a naturally induced V-graded category aϕ with a

ϕ
V = aϕ(V ) for V ∈ V

and similarly for morphisms. This way, Map becomes fibered over the category
Cat of small categories through the functor

Map −→ Cat : (U , a) 7−→ U .

0.3. Limited functoriality. An important shortcoming of Hochschild cohomol-
ogy of algebras is it’s lack of functoriality, which is known to be remedied in part
by turning to linear categories [5]. Our point of view is that limited functoriality
is in fact fundamentally determined by grading categories.

Let a be a U-graded category. Let the nerve N (a) of a be the simplicial set
with n-simplices σ = (u,A) given by data

A0 A1 . . . An

U0 u0

// U1 u1

// . . . un−1

// Un

with ui ∈ U , Ai ∈ aUi
.

The Hochschild complex of a is the complex CU (a) with

Cn
U (a) =

∏

(u,A)∈N (a)

Homk(aun−1
(An−1, An)⊗· · ·⊗au0

(A0, A1), aun−1···u1u0
(A0, An))

with the simplicial Hochschild differential. This complex is in fact a B∞-algebra
[6].

Let Mapc ⊆ Map denote the full subcategory of cartesian morphisms with re-
spect to the fibered category Map −→ Cat. It is easily observed that taking
Hochschild complexes defines a functor

C : Mapc −→ B∞ : (U , a) 7−→ CU(a).

Example 1. Consider an arrow category (b →M a) as in (3.c). The functor
(• •) −→ (• → •) underlies a cartesian morphism b

∐
a −→ b →M a. Functo-

riality yields an exact sequence

0 −→ C(b; a;M) −→ C(b→M a) −→ C(b)⊕C(a) −→ 0

in which the kernel C(b; a;M) is seen to compute Extb−a(M,M [−1]). The resul-
ting long exact cohomology sequence generalizes Happel’s sequence from (1.b).

Example 2. Let X be a quasi-compact separated scheme with an affine open basis
B. By (2.a), we have HHn(X) = ExtnOB−OB

(OB,OB). By the Cohomology Com-
parison Theorem from [11], this cohomology is computed by the complex CB(oB)
where oB is the Grothendieck construction of OB as in (3.b). We thus interpret
this complex as the Hochschild complex CB(X) of X with respect to the basis B.
For an inclusion V ⊆ U between open subsets U, V ⊆ X, let BU and BV be the
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restrictions of B to subsets within U and V respectively. By functoriality, the in-
clusion BV ⊆ BU yields CBU

(U) −→ CBV
(V ). This approach remedies the lack of

natural maps C(O(U)) −→ C(O(V )).

0.4. Sheaves and Mayer Vietoris sequences. In order to make maximal use
of grading categories, we now introduce a family of Grothendieck pretopologies on
Cat.

Definition 1. Let n ∈ N ∪ {∞}. A collection of functors (ϕi : Vi −→ U)i∈I is
an n-cover provided that it induces jointly surjective collections of maps (N (ϕi) :
Nk(Vi) −→ Nk(U))i∈I between k-simplices of the simplicial nerves for all k ≤ n.

For each n ∈ N ∪ {∞}, we thus obtain a pretopology of n-covers on Cat, and
an induced pretopology of n-covers on Mapc. We have:

Theorem 4. (1) The category Map constitutes a stack on Cat for each pre-
topology of n-covers with n ≥ 3.

(2) The functor C : Mapc −→ B∞ is a sheaf for the pretopology of ∞-covers
on Map.

Example 3. Consider a U-graded category a and two subcategories ϕi : Vi ⊆ U
for i ∈ {1, 2} that constitute an ∞-cover of U . Let (Vi, aϕi) −→ (U , a) and (V1 ∩
V2, aϕ) −→ (U , a) be corresponding cartesian morphisms. By the sheaf property of
C, we obtain a Mayer-Vietoris sequence of Hochschild complexes:

0 −→ CU (a) −→ CV1
(aϕ1)⊕CV2

(aϕ2) −→ CV1∩V2
(aϕ) −→ 0.

Example 4. Let X and B be as in Example 2. Let X = U1 ∪U2 be an open cover
and put U12 = U1 ∩ U2. Let B1, B2 and B12 be the restrictions of B to U1, U2

and U12 respectively. Put B0 = B1 ∪ B2 ⊂ B. As categories, B1 and B2 together
constitute an ∞-cover of B0, whence we obtain the Mayer-Vietoris sequence:

0 −→ CB0
(X) −→ CB1

(U1)⊕CB2
(U2) −→ CB12

(U12) −→ 0.

A more refined use of bases allows to obtain a sheaf of Hochschild complexes on
quasi-compact opens, as was shown in [7]. On the other hand, the existence of
Mayer-Vietoris long exact sequences for arbitrary ringed spaces was shown more
generally in [10].

Example 5. Let U be a finite poset and a a U-graded category. Looking at a
Hasse diagram of U , we can ∞-cover U “horizontally” by its “vertical” maximal
simplices. This covering is such that both the involved simplices and their inter-
sections are path categories of the following type:

V = 〈• → • → · · · → · · · → • → •〉

The Hochschild complex of each induced V-graded category can be decomposed by
treating it as an “iterated arrow category”. This illustrates the fact that the exact
sequences obtained in Example 1 and Example 3 respectively should be seen as
complementary tools for deconstructing Hochschild complexes.
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Acknowledgement. The author is very grateful to Michel Van den Bergh for the
original idea of introducing Hochschild complexes of map-graded categories, as a
tool for obtaining a Hochschild cohomology local-to-global spectral sequence for
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Dubreil et Marie-Paul Malliavin, 39ème Année (Paris, 1987/1988), Lecture Notes in Math.,
vol. 1404, Springer, Berlin, 1989, pp. 108–126. MR 1035222 (91b:16012)

[5] B. Keller, Derived invariance of higher structures on the Hochschild complex, preprint
http://www.math.jussieu.fr/~keller/publ/dih.dvi.

[6] W. Lowen, Hochschild cohomology of presheaves as map-graded categories, Int. Math. Res.
Not. IMRN (2008), Art. ID rnn118, 32. MR 2449052 (2009i:18015)

[7] , A sheaf of Hochschild complexes on quasi compact opens, Proc. Amer. Math. Soc.
136 (2008), no. 9, 3045–3050, preprint arXiv:0707.2605.

[8] , Hochschild Cohomology with Support , Internat. Math. Res. Not. (2014), doi:
10.1093/imrn/rnu079.

[9] W. Lowen and M. Van den Bergh, A local-to-global spectral sequence for Hochschild coho-
mology, in preparation.

[10] , Hochschild cohomology of abelian categories and ringed spaces, Advances in Math.
198 (2005), no. 1, 172–221.

[11] , A Hochschild cohomology comparison theorem for prestacks, Trans. Amer. Math.
Soc. 363 (2011), no. 2, 969–986. MR 2728592 (2012c:16033)

[12] B. Mitchell, Rings with several objects, Advances in Math. 8 (1972), 1–161. MR MR0294454
(45 #3524)

Motivic Donaldson–Thomas invariants of quantum C3.

Andrew Morrison

(joint work with Brent Pym and Balázs Szendrői)

To the memory of Kentaro Nagao.

Donaldson–Thomas invariants of a projective Calabi–Yau threefold (X,H) were
defined in [11] as (virtual) counts of the number of stable sheaves on X . For rank
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one sheaves with vanishing second Chern character they give one of the ways of
counting curves in X .

Motivic DT invariants [4] refine these deformation invariant numbers by asso-
ciating to each moduli space of stable sheaves it’s virtual motive: an element of

K µ̂
0 (V arC)[L

− 1

2 ] whose Euler characteristic is the classical DT invariant1. The
refined virtual motive is no longer deformation invariant. It depends on the po-
larization and on the complex structure. This gives two possible paths into the
non-commutative world.

In [8] Nagao and Nakajima discovered Szendrői’s non-commumtative DT in-
variants of the conifold [10]. By enlarging the perspective to consider moduli of
complexes in the derived category and varying the stability condition one can move
from moduli spaces of sheaves on the commutative resolution (giving the classical
DT invariants) to moduli spaces of modules for the algebra of the non-commutative
resolution (giving Szendrői’s non-commumtative DT invariants). Moveover, there
is a wall and chamber decomposition of the space of stability conditions with
explicit wall crossing formulas for the invariants. The picture was enhanced to
motivic invariants in [6]. Indeed Kontsevich and Soibelman define a polarization
of a non-commutative variety to be this extra data of a stability condition [4].

The goal of the talk is to take the second path into non-commutative geometry
by making a non-commutative deformation of the three dimensional algebra. We
present the simple case of quantum C3.

To begin consider the more general example of three dimensional Calabi–Yau
algebras Sa,b,c defined as the quotient of C〈x, y, z〉 by the cyclic derivatives of
axyz+ bxzy+ c/3(x3+ y3+ z3). In particular the algebra S1,−q,0 defines quantum
C3 and in the case q = 1 we recover C[x, y, z].

Motivated by considerations in physics one expects that the space of all mod-
ules over the algebra Sa,b,c should be described as the critical locus of a potential
function on a bigger space of quantum fields. Indeed there exists a regular function
fa,b,c : Hilb(C〈x, y, z〉) → C from the smooth quasi-projective non-commutative
Hilbert scheme whose critical locus {dfa,b,c = 0} equals Hilb(Sa,b,c), i.e. the
scheme parameterizing finite dimensional cyclic left Sa,b,c modules. We denote
by Hilbn(Sa,b,c) the component pararmetrizing length n modules.

The virtual motive [Hilbn(Sa,b,c)]vir := Ldim(Hilbn(C〈x,y,z〉))/2[φfa,b,c
] is defined

in terms of the motivic class of vanishing cycles [φfa,b,c
]: a motivic class in the

Grothendieck ring of varieties with the same underlying monodromic mixed Hodge
structure as the usual sheaf of vanishing cycles [3]. We collect all the virtual
motives in a partition function Za,b,c(y) :=

∑
n≥0[Hilb

n(Sa,b,c)]viry
n.

For the calculation we need the following description of our potential function
fa,b,c. The smooth moduli space Hilbn(C〈x, y, z〉) is a free GL(Cn) quotient of
the set of stable points in the linear space Vn = Cn × End(Cn)3 [9]. Here the
vector gives the cyclic generator and the three endomorphisms describe the action

1Elsewhere the motivic invariants are seen to have representation theoretic meaning with
relation to co-homological Hall algebras and in string theory to BPS states [5].
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of the co-ordinate functions. Now we can lift fa,b,c to a GL(Cn) invariant cubic
polynomial Fa,b,c on Vn given by

Fa,b,c(v,X, Y, Z) = Tr
(
aXY Z + bXZY + c/3(X3 + Y 3 + Z3)

)
.

The motivic class of vanishing cycles for such a quasi-homogenous polynomial
is much simpler and equals [φFa,b,c

] = [F−1
a,b,c(1)] − [F−1

a,b,c(0)] with a cyclic µ3

action on the fiber over one. In this case it is shown [1] that the virtual motives
[Hilbn(Sa,b,c)] can be recovered from those in the pre-quotient. Precisely it is
shown that by setting

Za,b,c(y) :=
∑

n≥0

[φFa,b,c
] · L−n2

[GL(Cn)]
yn

we can recover Za,b,c(y) = Za,b,c(L
1

2 y)/Za,b,c(L
− 1

2 y). When c = 0 the monodromy
action is trivial and we can go further. Via a stratification of vanishing cycles we
are left to compute the motivic classes of the moduli stacks of length n torsion
sheaves on quantum C2

Za,b,0(y) =
∑

n≥0

[C−b/a(n)]

[GL(Cn)]
yn

where Cq(n) = {(A,B) ∈ End(Cn)2 : AB = qBA} is the deformed commuting
variety. To state the theorem we use the plethystic exponential Exp with the basic
properties that Exp (u+ v) = Exp (u) · Exp (v) and Exp

(
Liyj

)
= (1 − Liyj)−1.

Theorem. Let q ∈ C∗, then for q a primitive rth root of unity we have

Z1,−q,0(y) = Exp

(
2L− 1

L− 1

y

1− y
+ (L − 1)

yr

1− yr

)
,

otherwise

Z1,−q,0(y) = Exp

(
2L− 1

L− 1

y

1− y

)
.

To prove the result we make a stratification of the deformed commuting variety.
In the generic case all torsion sheaves must be supported on the union of the two
coordinate axis. The exponent (2L− 1)/(L− 1) corresponds geometrically to the
motivic class of the stack of such simple modules. In the rth root of unity case
there can be r-dimensional simple modules supported away from the coordinate
axis.

In forthcoming work [7] we will consider other non-commutative deformations
of crepant resolutions.
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Higgs Bundles and Quiver Representations

Sergey Mozgovoy

(joint work with Markus Reineke)

We discussed the problem of counting semistable Higgs bundles (and twisted
Higgs bundles) over a curve. So far this counting was done only for rank 2 (Hitchin)
and 3 (Gothen) non-twisted Higgs bundles and for ranks 2 − 5 co-Higgs bundles
on P1 (twist of degree 2, Rayan). There exists a conjecture for the invariants
of moduli spaces of arbitrary rank non-twisted Higgd bundles due to Hausel and
Rodriguez-Villegas (generalized for twisted Higgs bunldes by myself). The goal of
the talk was to explain the general strategy of counting semistable Higgs bundles,
give an explicit formula for the invariants of moduli spaces of twisted Higgs bundles
on P1 and to relate them to the invariants of moduli spaces of representations of
some infinite symmetric quiver. We can verify on a computer for any rank and
any twist that our formula gives the same result as a Hausel-Rodriguez-Villegas
conjecture but could not prove that the formulas are equivalent

Morse theory of D-module categories

Thomas Nevins

(joint work with Gwyn Bellamy, Chris Dodd, Kevin McGerty)

Suppose X is a smooth complex algebraic variety with the action of a reductive
algebraic group G. In many instances, the Morse theory of X implies strong con-
sequences for the ordinary or equivariant cohomology of X . I explained joint work
with Bellamy, Dodd, and McGerty that develops parallel structure “one categori-
cal level higher,” for categories of equivariant D-modules on X , with consequences
for representation theory and topology.

Associated to X , G, and an additional choice of G-equivariant line bundle on
T ∗X , one typically gets an associated Kirwan-Ness stratification of T ∗X . Such a
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stratification gives a filtration of the category D(X/G) of G-equivariantD-modules
on X (really, an appropriate dg enhancement of a suitable derived category of
such modules) by singular support, or microsupport, in T ∗X . In joint work with
McGerty, we prove that this filtration realizes D(X/G) as glued from the cate-
gories microsupported on the strata: for each closed inclusion of strata there is a
corresponding recollement of categories. In particular, we establish the existence
and good properties of certain non-obvious adjoint functors. As a consequence,
we prove a version of “hyperkaehler Kirwan surjectivity” for cotangent bundles.

Restricting attention to the top Kirwan-Ness stratum, i.e., the GIT-semistable
locus, the resulting category is frequently identified with a category of deformation-
quantization (DQ) modules on a smooth symplectic algebraic variety with a Gm-
action that rescales the symplectic form. In joint work with Bellamy, Dodd, and
McGerty, we show that such a category satisfies an analogue of Kashiwara’s equiv-
alence for D-modules: modules with certain support conditions are equivalent to
modules over a smaller variety. This provides a “categorical cell decomposition”
of such categories in many examples, leading to concrete applications to K-theory
and Hochschild and cyclic homology of the categories, consequences for compact
generation, and more. The resulting applications for linear invariants, specialized
to particular examples, imply numerical and linear-algebraic assertions about, for
example, categories of representations of wreath product symplectic reflection al-
gebras.

The codimension-three conjecture for holonomic DQ-modules

François Petit

This talk is concerned with the codimension-three conjecture for holonomic
Deformation Quantization modules (DQ-modules). This is an analogue of the
codimension-three conjecture for microdifferential modules formulated by M. Kashi-
wara at the end of the 1970’s and recently proved by M. Kashiwara and K. Vilonen
(see [4]). The codimension-three conjecture is concerned with the extension of a
holonomic microdifferential system over an analytic subset of the cotangent bundle
of a complex manifold. Since DQ-modules provide a generalization of microdif-
ferential modules to arbitrary symplectic manifolds (see [3]), it is natural to try
to extend the codimension-three conjecture to holonomic DQ-modules. More pre-
cisely, we have obtained, in the case of DQ-modules, the following results.

Theorem 1. Let X be a complex manifold endowed with a DQ-algebroid stack
AX such that the associated Poisson structure is symplectic. Let Λ be a closed
Lagrangian analytic subset of X and Y be a closed analytic subset of Λ such that
codimΛY ≥ 3. Let M be a holonomic (Aloc

X |X\Y )-module, whose support is con-
tained in Λ\Y . Assume thatM has an AX |X\Y -lattice. Then,M extends uniquely
to a holonomic module defined on X whose support is contained in Λ.

and
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Theorem 2. Let X be a complex manifold endowed with a DQ-algebroid stack
AX such that the associated Poisson structure is symplectic. Let Λ be a closed
Lagrangian analytic subset of X and Y be a closed analytic subset of Λ such that
codimΛY ≥ 2. Let M be a holonomic Aloc

X -module whose support is contained in
Λ and let M1 be an Aloc

X |X\Y -submodule of M|X\Y . Then, M1 extends uniquely

to a holonomic Aloc
X -submodule of M.

We hope that the submodule version of the codimension-three conjecture for
holonomic DQ-modules will find application to the representation theory of Chered-
nik algebras via the localization results due to M. Kashiwara and R. Rouquier [2].

Though the codimension-three conjecture for holonomic DQ-modules is strictly
more general than the version for microdifferential modules, it relies deeply on
the tools and ideas elaborated by M. Kashiwara and K. Vilonen. Indeed, our
proof follows their general strategy. One of the main differences between the two
problems is that we are working in a non-conical setting and thus, we have to
adapt their strategy to such a framework.

We briefly describe the proof of the above statements. We keep the notation
of Theorem 1 and 2 and denote by j : X \ Y → X the open embedding of X \ Y
into X , Then, the problem amount essentially to show that j∗M and j∗M1 are
coherent. To prove this, we first notice this is a local problem. Thus, we can
adapt a standard technique in complex analysis in several variables due to [5] and
show that the coherence of j∗M and j∗M1 is equivalent to the coherence of the
pushforward of these modules by a certain projection, the restriction of which to
the support of the module is a finite map. Then, the coherence of the pushforward
of j∗M and j∗M1 by the aforementioned projection follows from the below result
due to M. Kashiwara and K. Vilonen. This is a difficult extension to coherent
sheaves on OX [[~]] of a classical theorem due to Frisch-Guenot, Trautmann and
Siu (see [1, 6, 7]).

Theorem 3 ([4, Theorem 1.6]). Let X be a complex manifold and Y be a sub-
variety of X and j : X \ Y → X the open embedding of X \ Y into X. If N
is a coherent reflexive OX\Y [[~]]-module and codimY ≥ 3 then j∗N is a coherent
OX [[~]]-module.
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Frobenius Ext-algebras arising from Artin-Schelter Gorenstein
Algebras

Daniel Rogalski

(joint work with Manuel Reyes, James Zhang)

Let k be an algebraically closed field. An Artin-Schelter (AS) Gorenstein algebra
is a finitely generated N-graded k-algebra A = k ⊕ A1 ⊕ A2 ⊕ . . . such that (i) A

has finite injective dimension d as a right A-module, and (ii) ExtiA(k,A) = 0 for

i 6= d, and ExtdA(k,A)
∼= k(ℓ) (a graded shift of k), where k = A/A≥1 is the trivial

module. If (i) is replaced by the stronger condition that A has finite (graded)
global dimension d, then A is called AS regular. Any AS Gorenstein algebra A
has a graded automorphism µA : A → A associated to it called the Nakayama
automorphism, which is a natural generalization to higher dimension of the usual
Nakayama automorphism which is defined when d = 0 and A is graded Frobenius.
There is also the homological determinant hdet : Autgr(A)→ k, where Autgr(A) is
the group of graded automorphisms of A, which is important in noncommutative
invariant theory.

We conjecture that for any AS Gorenstein algebra A, hdetµA = 1 always holds.
In a previous paper [1] this conjecture was shown to have numerous applications;
for example, if the conjecture is true, one obtains that any AS Gorenstein algebra
A with ℓ 6= 0 is a graded twist of an AS Gorenstein algebra A′ such that µA′ has
finite order [1, Theorem 7.8].

In the current work we describe a method that can be used to prove the con-
jecture in quite wide generality. Let Dǫ(A) be the full triangulated subcategory of
the derived category of graded left A-modules which consists of perfect complexes
(bounded complexes of finitely generated projectives) with finite dimensional co-
homologies. We show that this category has a Serre functor of the form ΣdT ℓΦ,
where Σ is the shift of complexes, T is induced by the shift of grading on modules,
and Φ is induced by the action of the Nakayama automorphism µA on modules.
Then given any object X in Dǫ(A) which satisfies X ∼= Φ(X) we show that the
associated graded Ext algebra E =

⊕
i,j HomDǫ(A)(X,ΣiT j(X)) is Frobenius, and

we give a formula for its Nakayama automorphism µE . As long as such an object
X exists, by studying the relation between µE and µA and using that hdetµE = 1
(which is relatively easy to prove), we can prove the conjecture that hdetµA = 1.
The study of these Ext algebras E and their Nakayama automorphisms µE seems
interesting more generally, and we give other applications as well.

Ultimately, using this method we can prove the conjecture hdetµA = 1 for any
AS Gorenstein algebra A such that Dǫ(A) 6= 0, by reducing to a case where a
suitable object X exists. We show that the condition Dǫ(A) 6= 0 holds in most
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important cases, for example whenever A is a factor ring of an AS regular algebra,
and we conjecture that it holds for all AS Gorenstein algebras.
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Categorification of gl(1|1)–representations

Antonio Sartori

The representation theory of the complex general Lie superalgebra gl(1|1), al-
though quite elementary, presents interesting combinatorial properties. For ex-
ample, the quantum invariant of links corresponding to its vector representation
C1|1 is the Alexander polynomial. This motivates our interest in computing in-
tertwining operators between tensor products of representations and categorifying
them.

In the talk, we describe in full detail the category of weight representations.
Contrary to the case of usual semisimple Lie algebras, finite-dimensional rep-
resentations of gl(1|1) need not be semisimple. In particular, the category of
finite-dimensional weight representations decomposes into a semisimple and a non-
semisimple summand.

We focus then on the semisimple monoidal subcategory generated by exterior
powers of the natural representation: here we can define and compute an analog of
Lusztig’s canonical basis, and prove that it has integrality and positivity properties.
We can then construct a categorification using subquotient categories of the BGG
category O(gl(n)).

Finally, we show how these categories have a natural geometric interpretation
related to the geometry of the Springer fiber of hook type. In particular, the
endomorphism rings of indecomposable projective modules in these categories are
naturally isomorphic to the cohomology rings of attracting subvarieties for an
action of a one-dimensional torus.
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Poisson and Hochschild-de Rham Homology adn Symplectic
Resolutions

Travis Schedler

(joint work with Pavel Etingof)

I defined the notion of Hochschild-de Rham homology of a deformation quan-
tization of a Poisson variety. In previous work, we defined Poisson-de Rham ho-
mology of a Poisson variety, which recovers in the smooth symplectic case the de
Rham cohomology of the variety; more generally, for varieties admitting a smooth
symplectic resolution, this conjecturally recovers the de Rham cohomology of the
symplectic resolution. For affine varieties the degree zero Poisson-de Rham ho-
mology coincides with the usual Poisson homology. Similarly, the Hochschild-de
Rham homology recovers the de Rham cohomology when quantizing smooth sym-
plectic varieties and conjecturally varieties admitting symplectic resolutions, and
the degree zero Hochschild-de Rham homology of an affine variety is its degree
zero Hochschild homology. In the case that the variety has finitely many leaves,
the Hochschild and Poisson-de Rham homologies are finite-dimensional, and zero
in degree of absolute value greater than the dimension.

Some enhancements of derived categories of coherent sheaves and
applications

Olaf M. Schnürer

(joint work with Valery A. Lunts)

Let X be a quasi-projective scheme over a field k. The unbounded derived cat-
egory D(Qcoh(X)) of quasi-coherent sheaves on X contains the bounded derived
category Db(Coh(X)) of coherent sheaves and the category of perfect complexes
Perf(X) as full triangulated subcategories,

Perf(X) ⊂ Db(Coh(X)) ⊂ D(Qcoh(X)).

The objects ofPerf(X) can be characterized as the compact objects ofD(Qcoh(X)).
Recall that an enhancement of a triangulated (k-)category T is a pretriangu-

lated dg (k-)category A together with an equivalence [A] ∼= T where [A] is the
homotopy category of A. For example, the full dg subcategory C(Qcoh(X))h-inj of
h-injective objects of the dg category C(Qcoh(X)) of complexes of quasi-coherent
sheaves forms an enhancement of D(Qcoh(X)). The obvious full dg subcategories
of C(Qcoh(X))h-inj define enhancements of Db(Coh(X)) and Perf(X).

Fix a finite affine open covering (Ui)
n
i=1 of X and consider for any complex P

of vector bundles on X its ∗-Čech resolution

C∗(P ) =
(∏

i

Ui
P →

∏

i<j

Uij
P → . . .

)

where UP = u∗u
∗P for u : U →֒ X. If P is a bounded complex of vector bundles

the complex C∗(P ) is defined as the obvious totalization.
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For integral X and bounded complexes P and Q of vector bundles the canonical
map

Hom[C(Qcoh(X))](C∗(P ), C∗(Q))→ HomD(Qcoh(X))(C∗(P ), C∗(Q))

is an isomorphism and hence the full dg subcategory of C(Qcoh(X)) consisting of
∗-Čech resolutions C∗(P ) of bounded complexes P of vector bundles forms an en-
hancement of Perf(X). For smooth projective X this enhancement was considered
in [BLL04].

We found a modification of this construction which provides an enhancement
of Perf(X) for any quasi-projective scheme X over k. The objects of this en-
hancement are bounded complexes of vector bundles and the morphism spaces
are suitably defined dg submodules of HomC(Qcoh(X))(C∗(P ), C∗(Q)). Using !-Čech

resolutions we similarly define enhancements of Perf(X) and Db(Coh(X)). We call
these enhancements Čech enhancements.

Recall that a dg category A is called k-smooth if the diagonal dg bimodule A
is a compact object of the derived category D(A⊗Aop) of dg A⊗Aop-modules.

We say that Perf(X) (resp. Db(Coh(X))) is smooth over k if its h-injective
enhancement is k-smooth as a dg category.

Using Čech enhancements we prove the following three theorems.

Theorem 4 (Homological versus geometric smoothness). Let ∆: X → X ×X be
the diagonal immersion. The following three conditions are equivalent:

(1) Perf(X) is smooth over k;
(2) ∆∗(OX) ∈ Perf(X ×X);
(3) X is smooth over k.

Theorem 5. If the field k is perfect then Db(Coh(X)) is smooth over k.

Theorem 6 (Fourier-Mukai kernels and dg bimodules). Let X and Y be quasi-

projective schemes over a field k and consider the projections X
p
←− X × Y

q
−→ Y.

Then there are dg algebras A and B and equivalences of triangulated categories

θX : D(Qcoh(X))
∼
−→ D(A),

θY : D(Qcoh(Y ))
∼
−→ D(B),

θX×Y : D(Qcoh(X × Y ))
∼
−→ D(Aop ⊗B),

such that for any K ∈ D(Qcoh(X × Y )) with corresponding M = θX×Y (K) the
diagram

D(Qcoh(X))

θX ∼

��

Rq∗(p
∗(−)⊗LK)

// D(Qcoh(Y ))

θY ∼

��

D(A)
−⊗L

AM
// D(B)

commutes up to an isomorphism of triangulated functors.

Some variants of these results are claimed in the literature without proof or
with gaps in the proofs, cf. the discussion in [LS14].
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All three theorems admit short heuristic arguments making them plausible.
However, turning these arguments into rigorous proofs seems to be hard. The
different functors involved (inverse image, tensor product, direct image, RHom)
are usually computed via different types of replacements (h-flat, h-injective) which
makes it difficult to treat them compatibly. It would be desirable to lift all these
functors and the adjunctions among them from the derived level to the dg level of
enhancements.

For simplicity we stated our results here for quasi-projective schemes over a
field. This assumption can be weakened, see [LS14], where the above theorems
and some more results characterizing properness are proved.
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Ring-theoretic blowing down

Susan J. Sierra

(joint work with Dan Rogalski, Toby Stafford)

This work is part of an ongoing project to extend tools from the algebraic geometry
of projective surfaces to noncommutative graded domains of GK-dimension 3, with
the ultimate goal of classifying such algebras.

We first discuss the algebraic geometry we wish to generalise. Fix an alge-
braically closed field k; all varieties and algebras will be defined over k. Let X be
a smooth projective surface. Let x ∈ X , and let π : Blx(X) → X be the blowup
of X at x; recall that π is a monoidal transformation. It is well-known that:

Proposition 5. Blx(X) is a smooth projective surface. If L = π−1(x) is the
exceptional locus of π, then L ∼= P1 and L.L = −1.

In the proposition above, π contracts L to x by construction. A celebrated
theorem (“Castelnuovo’s contraction criterion”) says that the converse also holds:
the properties of L characterise curves that can be contracted to smooth points.

Theorem 7 (Castelnuovo). Let Y be a smooth projective surface, and let L be
a curve on Y so that L ∼= P1 and L.L = −1. Then there is a smooth projective
surface X and a birational morphism π : Y → X so that L is the exceptional locus
of π and Y ∼= Blx(X), where x = π(L).

The other crucial theorem in the subject is the following consequence of Zariski’s
Main Theorem, which shows that monoidal transformations are the building blocks
of birational geometry of surfaces.
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Theorem 8 (Zariski). Let X 99K Y be a birational map of smooth projective sur-
faces. Then there are a smooth projective surface Z and compositions of monoidal
transformations Z → X, Z → Y so that

Z

��
❅❅

❅❅
❅❅

❅

~~⑦⑦
⑦⑦
⑦⑦
⑦

X //❴❴❴❴❴❴❴ Y

commutes.

The fundamental example of this theorem is the isomorphism between the
blowup of P2 at two points and the blowup of P1 × P1 at one point. The dia-
gram above becomes:

(1) Blr(P
1 × P1) ∼= Blp,qP

2

%%❑
❑❑

❑❑
❑❑

❑❑
❑

xx♣♣
♣♣
♣♣
♣♣
♣♣

P1 × P1 //❴❴❴❴❴❴❴❴❴❴❴ P2

To generalise this to the noncommutative setting, we first must extend some
definitions. Let R,S be connected graded k-algebras that are domains. We say
that R,S are birational if Qgr(R)0 ∼= Qgr(S)0. (If R is a homogeneous coordinate
ring of a projective variety X , then Qgr(R)0 ∼= k(X), so this generalises the defi-
nition from commutative algebraic geometry.) For example, let S be a quadratic
Sklyanin algebra (a “noncommutative P2) and let S′ be a cubic Sklyanin algebra
(or more generally a smooth noncommutative quadric surface). Michel Van den
Bergh [2, Theorem 13.4.1] has proved that S and S′ are birational.

Our results apply to elliptic algebras: an elliptic algebra is a connected graded
domain R containing a central g ∈ R1 so that R/(g) is isomorphic to a twisted
homogeneous coordinate ring on an elliptic curve E. (We say that E is associated
to R.) For example, the 3-Veronese T := S(3) of S is elliptic, as is T ′ := (S′)(4).

For elliptic algebras, there is a good analogue of a monoidal transformation.
Let R be an elliptic algebra with dimR1 ≥ 4. Then R1/(g) may be identified
with global sections of an invertible sheaf L on E. If p ∈ E, we define Blp(R)
to be the subalgebra of R generated by the elements of R1 whose images mod g
vanish at p. (The algebra Blp(R) also occurs in [3] as the coordinate ring of the
more categorical blowups defined there.) A theorem of Rogalski [1, Lemma 9.1]
says that Blp(R) has a line module L so that R/Blp(R) ∼= L⊕Z as an (ungraded)
Blp(R)-module. We refer to L as the exceptional line module for Blp(R).

Let R be an elliptic algebra. A graded R-module L is a line module if L is
cyclic and has Hilbert series 1/(1 − s). We say that L has self-intersection (−1)
if Ext1R(L,L) = 0 (there is also an equivalent definition using noncommutative
intersection theory). Then we prove noncommutative versions of Proposition 5
and Theorem 7:
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Proposition 6. Let R be an elliptic algebra with associated elliptic curve E, let
p ∈ E, and let L be the exceptional line module for R′ := Blp(R). If the image of
L has projective dimension 1 over R′/(g − 1), then L has self-intersection (−1).

(We note that it is possible for the condition on the projective dimension of L to
fail and for Ext1R(L,L) to be nonzero, so the analogy with commutative geometry
is not exact.)

Theorem 9. Let R be an elliptic algebra with associated elliptic curve E and let
L be a line module with self-intersection (−1). Then there is an elliptic algebra R′

associated to E and a point p ∈ E so that R ∼= Blp(R
′), with exceptional line L.

As yet, there is no general analogue of Theorem 8. We do prove, however:

Theorem 10. Let E be the elliptic curve associated to T ′, defined above, and let
r ∈ E be generic. Then there is a quadratic Sklyanin algebra S so that T = S(3)

is associated to E and points p, q ∈ E so that

Blr(T
′) ∼= Blp,q(T ).

Our theorem also holds for smooth quadric surfaces, giving a noncommutative
version of (1).
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Serre functors and derived equivalences for hereditary Artin algebras

Adam-Christiaan van Roosmalen

(joint work with Donald Stanley)

I reported on recent research by Donald Stanley and myself in which we studied
a connection between Serre functors and derived equivalences (see [3]). Through-
out, let k be a field. We will assume that all categories are k-linear. For a
triangulated category C, we will write Σ for the suspension.

1. Serre duality

Let C be a Hom-finite triangulated category. A Serre functor ([2]) is a triangle
autoequivalence S : C → C together with isomorphisms

ηA,B : Hom(A,B) ∼= Hom(B, SA)∗,

for any A,B ∈ C, which are natural in A,B and where (−)∗ is the vector space
dual.
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We say that an abelian category A has Serre duality if DbA admits a Serre
functor. It has been shown in [2] that the following categories have Serre duality:

• the category modΛ of finite-dimensional modules over a finite-dimensional
algebra Λ with finite global dimension, and
• the category CohX of coherent sheaves on a smooth projective variety X.

2. t-structures

Let C be a triangulated category. A t-structure ([1]) on C is a pair (U ,V) of full
subcategories of C satisfying the following conditions:

(1) ΣU ⊆ U and V ⊆ ΣV ,
(2) Hom(ΣU ,V) = 0,
(3) ∀C ∈ C, there is a triangle U → C → V → ΣU with U ∈ U and V ∈ Σ−1V .

Furthermore, we will say that the t-structure (U ,V) is bounded if
⋃

n∈Z

ΣnU =
⋃

n∈Z

ΣnV = C.

The heart of a t-structure (U ,V) is defined to be U ∩ V . It has been shown in
[1, Théorème 1.3.6] that the heart is an abelian category.

When C is the bounded derived category DbA of an abelian category A, the
embedding H → DbA lifts to a triangle functorDbH → DbA, called the realization
functor. In general, the realization functor is not an equivalence. The following
theorem is standard (see [1, Proposition 3.1.16]).

Theorem 11. Let A be an abelian category, and let (U ,V) be a t-structure in
DbA with heart H. The realization functor DbH → DbA is an equivalence if and
only if for all A,B ∈ H, all n ≥ 2, and every morphism f : A→ ΣnB, there is a
monomorphism B → C in H such that A→ ΣnB → ΣnC is zero.

3. Main result

A first connection between Serre functors and derived equivalences is given in
the following proposition.

Proposition. Let A be an abelian category, and let (U ,V) be a t-structure in DbA
with heart H. If the realization functor DbH → DbA is an equivalence, then (U ,V)
is bounded and SU ⊆ U .

One can now wonder when the converse of the previous proposition holds.

Question. Let A be an abelian category of which the bounded derived category
DbA admits a Serre functor S : DbA → DbA, and let (U ,V) be a t-structure
on DbA with heart H = U ∩ V. For which categories A (and possibly for which
restricted class of t-structures (U ,V) on DbA) are the following statements equiv-
alent:

(1) the realization functor DbH → DbA is an equivalence,
(2) the t-structure (U ,V) is bounded and SU ⊆ U?
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The main result I reported on, is that the answer to the previous question is
positive when A is the module category of a finite-dimensional hereditary algebra:

Theorem 12. Let Λ be a finite-dimensional hereditary algebra and write modΛ
for the category of finite-dimensional right Λ-modules. Let (U ,V) be a t-structure
in Db modΛ with heart H.

The realization functor DbH → DbA is an equivalence if and only if (U ,V) is
bounded and SU ⊆ U .
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On Quantum Symmetry

Chelsea Walton

Let k be an algebraically closed field of characteristic zero. The purpose of this
work is to study quantum analogues of group actions on commutative k-algebras.
Here, we restrict our attention to the actions of finite quantum groups, i.e. finite
dimensional Hopf algebras H . Two important subclasses of such H are those that
are semisimple (that is to say, semisimple as an algebra; these Hopf algebras are
always finite dimensional) and those that are pointed (that is to say, all simple
H-comodules are 1-dimensional).

Naturally there are many choices on what (quantum) k-algebras we can act
on, but we are first motivated from the viewpoint of classic invariant theory and
algebraic geometry, where the examination of Hopf actions on commutative do-
mains over k is of interest. The classification of semisimple Hopf actions on such
k-algebras is completely understood by following result with Pavel Etingof.

Theorem 1. [2, Theorem 1.3] Any action of semisimple Hopf algebra H over k
on a commutative domain over k factors through a finite group action.

The theorem fails if any of the hypotheses are omitted: see [2, Remark 4.3] for
‘domain’ being omitted, [2, Example 5.10] and [5, Examples 7.4–7.6] for ‘commu-
tative’ being omitted, and Theorem 2 below for the omission of semisimplicity.

Next, Etingof and I investigate finite dimensional Hopf actions on quantizations
of commutative domains. An important case of this task was established when
the module algebra was the n-th Weyl algebra An(k) with standard filtration and
the H-action preserves the filtration of An(k). Here, we get that the H-action
factors through a finite group action [2, Corollary 1.4]. Generalizing this result to
actions on more general quantizations of commutative domains (including rings
of differential operators, enveloping algebras of a finite dimensional Lie algebra,
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quantized quiver varieties, etc.) is a work in progress with Juan Cuadra [1]. Here,
we will not assume that the H-action preserves the filtration of the module algebra.

In contrast to Theorem 1, we have that there are many actions of finite dimen-
sional nonsemisimple Hopf algebras on commutative domains that do not factor
through a group action. Etingof and I study the case when H is pointed of finite
Cartan type. The study boils down to H-actions on fields (that do not factor
through a group action), and we refer to such H as Galois-theoretical.

Theorem 2. [3, Theorem 1.2] There exist several examples and non-examples of
Galois-theoretical Hopf algebras, including the Taft algebras, uq(sl2), and some
Drinfeld twists of other small quantum groups.

The classification of Galois-theoretical finite dimensional pointed Hopf algebras
(of finite Cartan type) is a work in progress [4]. Please see the references below
for several questions and conjectures related to this program.
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Category O and KLR algebras

Ben Webster

We discuss a generalization of the BGG category O which arises from other sym-
plectic varieties, in particular from quiver varieties. This approach works by defin-
ing a category of D-modules that category O is a quotient of. Using topological
techniques, we can compute this category as the representations of a convolution
algebra with a combinatorial description. In the quiver case, what arises is a gen-
eralization of KLR algebras, which we call weighted KLR algebras. We explain
how these relations arise from the geometry of quivers.

Reporter: Louis de Thanhoffer de Volcsey


